Quality-assured fuels as part of an integrated waste management concept

Dr. Hubert Baier

WhiteLabel-TandemProjects e.U. President of the European Recovered Fuel Organisation – ERFO

Workshop TEHNOEKO Croatia - Poreč, 06.06.2024

From waste to quality assigned fuels

WhiteLabel TandemProjects e.U.

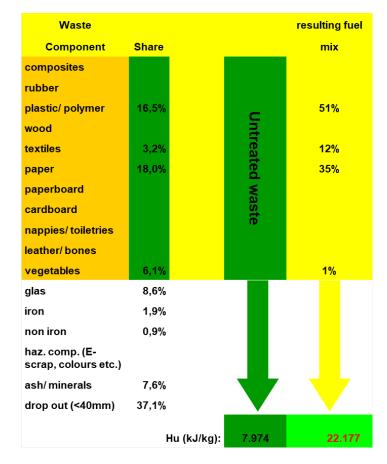
Competence

Activities

References About Us

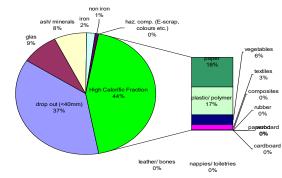
0:00 / 6:48

6



Quality assigned Treating of Municipal Sol Vaste (MSW) to Calciner Fuel (RDF) and Main Burner Fuel (SRF)

How to proceed?


Waste Assessment: Composition & thermal potential

Determination of potential/ processing strategy

Waste composition wt%	untreated waste	Input after bio dry + sort.	НСГ	bio fraction undersize <80mm	calciner fuel (RDF)	heavy fraction (to MWI or landfill)	main burner fuel (SRF)
organic	31,0%	23,9%	7,6%	38,4%	6,4%	9,3%	2,8%
paper, cardboard, journals	11,0%	11,1%	18,9%	4,2%	22,3%	13,8%	33,5%
long living wrappings	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Pet-wrappings	1,0%	1,0%	1,8%	0,3%	2,5%	0,9%	4,2%
exp. polystyrene	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
smooth plastics	12,0%	12,1%	20,6%	4,6%	27,8%	10,1%	53,6%
hard plastics	3,0%	3,0%	5,1%	1,1%	6,1%	3,8%	0,7%
iron	1,2%	1,2%	1,3%	1,1%	0,4%	2,5%	0,0%
glass	2,0%	2,4%	0,8%	3,8%	0,3%	1,5%	0,0%
soil + stones	2,0%	2,4%	0,5%	4,0%	0,4%	0,6%	0,0%
wood	1,0%	1,2%	2,0%	0,4%	0,7%	3,9%	0,1%
textiles	4,0%	4,7%	9,1%	0,9%	3,1%	17,7%	3,3%
divers	1,0%	1,2%	1,3%	1,1%	1,1%	1,5%	1,1%
alumina	0,8%	0,8%	0,9%	0,8%	0,7%	1,0%	0,2%
rubber + leather	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
toiletries	10,0%	11,9%	5,0%	17,9%	6,8%	2,5%	0,1%
residuals	20,0%	23,7%	25,2%	22,4%	21,3%	30,8%	0,5%
Total:	100,0%	100,7%	100,0%	101,2%	100,0%	100,0%	100,0%
tonnage per year:	110.000	93.220	43.899	49.321	25.939	17.960	12.122
calorific value MJ/kg DM	8,5	8,9	12,7	5,5	14,4	10,1	21,2
net cv MJ/kg incl. moisture:	20,0%	7,1	10,1		11,5		17,0

Access and competition

Example: Berlin and 200 km radius

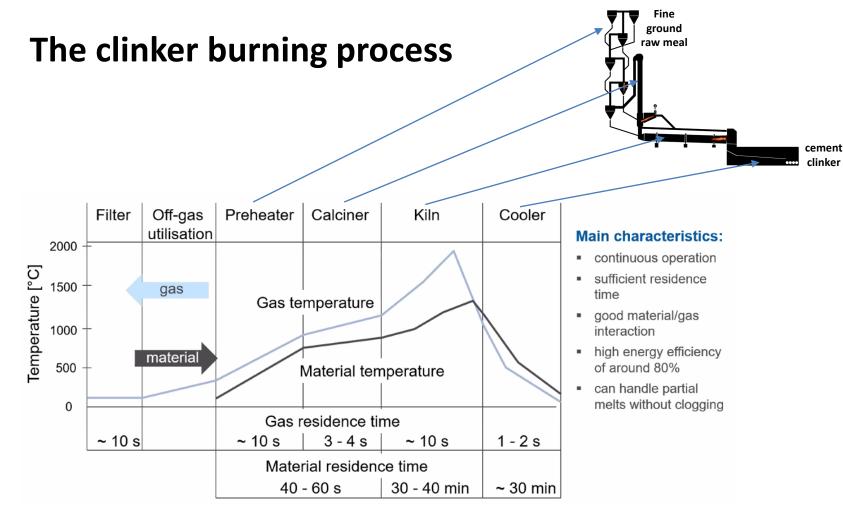
Integrated cement plant WtE-power plant Coal fired power plant

Technical assessment

The technical assessment shall serve you to determine the right properties:

- 1) Type of kiln and needs for adopting the processes
- 2) Energy demand and materials handling
- 3) Limitations according the raw material and fuel(s)
- 4) Limitation according to air pollution control (permission)

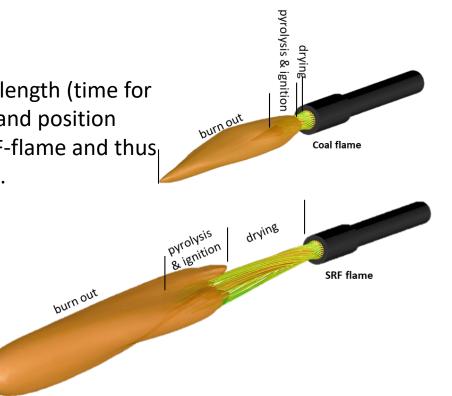
Technical assessment


Whether the consistency of the waste is liquid, pasty or solid the final user defines the requirement and specification of the Alternative Fuel and Raw materials (AFR), and consequently defines the requested equipment in the pre-treatment process.

Consequently, untreated waste cannot be used as a fuel!

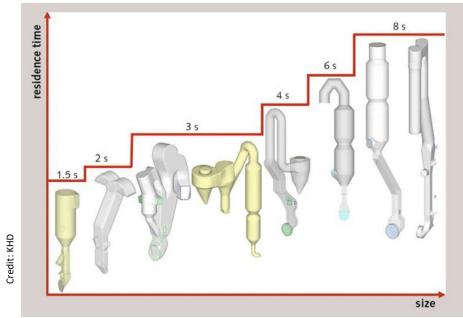
However, when using AFs we have to respect the requirements of the

- thermal production process,
- product quality,
- air pollution control.

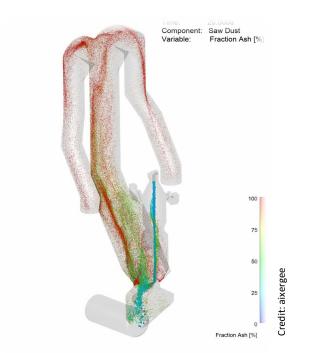

The clinker forming pyro process is not a disposal process!

Technical Assessment

The conditioning quality determines the length (time for drying and ignition), length (dwell time) and position (amount and type of particles) of the SRF-flame and thus the temperature profile in the rotary kiln.

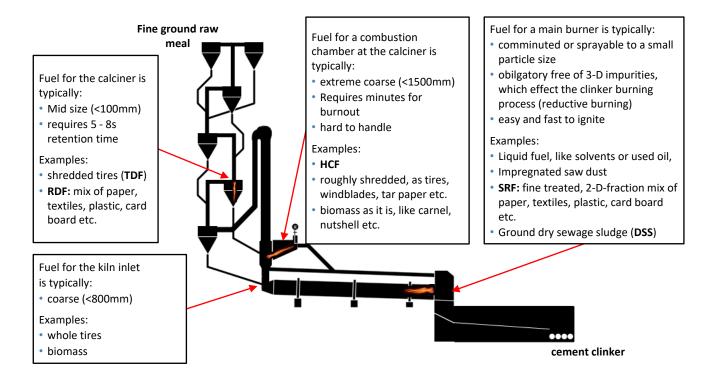


Burning carbon and hydrogen based fuels (coal, lignite, oil/ solvents, SRF or H_2) results in radiant heat for the clinkerization process.

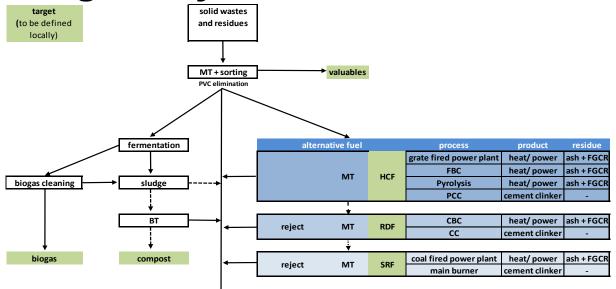

KG 02 2012

ource: PROCESS // Optir

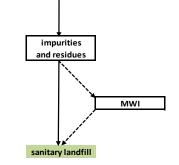
Technical Assessment



The residence time, oxygen distribution and the point of feeding defines the grain size of RDF for designing the pre-processing right.

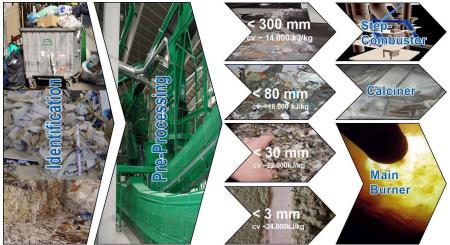


Vice versa a CFD simulation can guide to the best point of feeding for the pyro process.


Co-processing Alterative Fuels (AFs)

Designing the integrale system

- ✓ Define the target(s) correctly
- ✓ Set the plant to the required characteristics and needs of the client(s)
- ✓ Consider all long-term costs and revenues in the design

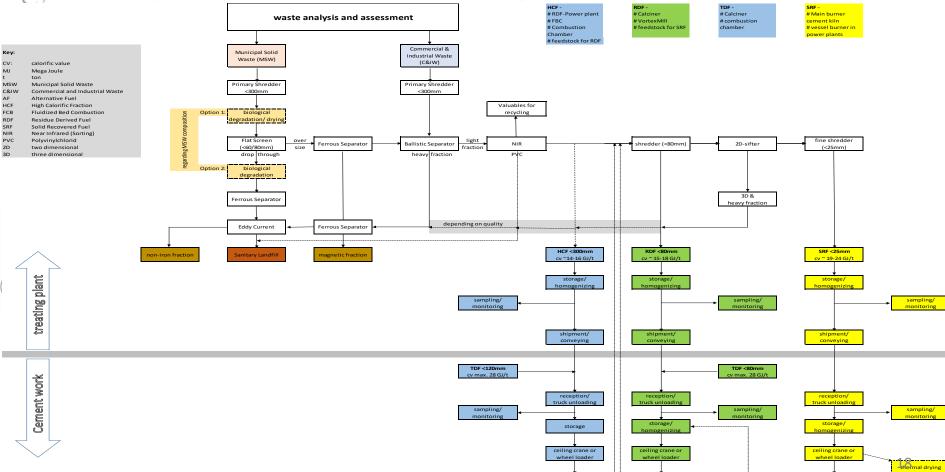

Abbrev	viations:			
MT	Mechanical Treatment			
BT	Biological Treatment			
HCF	High Calorific Fraction (<300 mm)			
RDF	Residue Derived Fuel (approx. <100mm)			
SRF	Solid Recovered Fuel (approx. <30mm)			
FBC	Fluidized Bed Combustion			
PCC	pre-combustion chamber (cement kiln)			
CBC	Circulating Bed Combustion			
CC	Calciner (cement kiln)			
FGCR	Flue Gas Cleaning Residues 16			
MWI	Municipal Waste Incinerator			

Important note:

If a pre-processing is planned, both results are required from

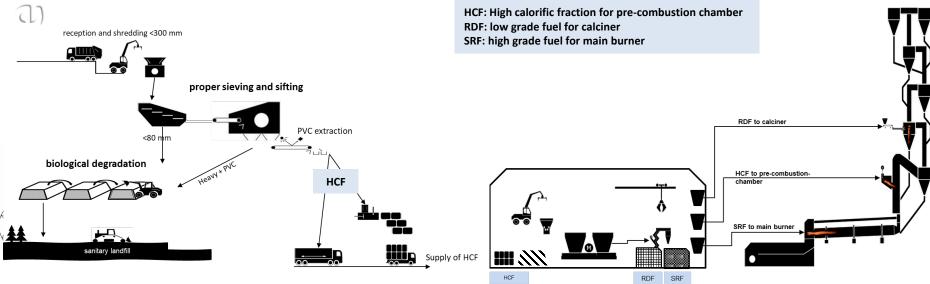
- a) technical assessment
- b) thermal potential of the waste

The waste potential and the performance of the kiln determine the required design of the pre-treatment plant and thus the necessary investment.

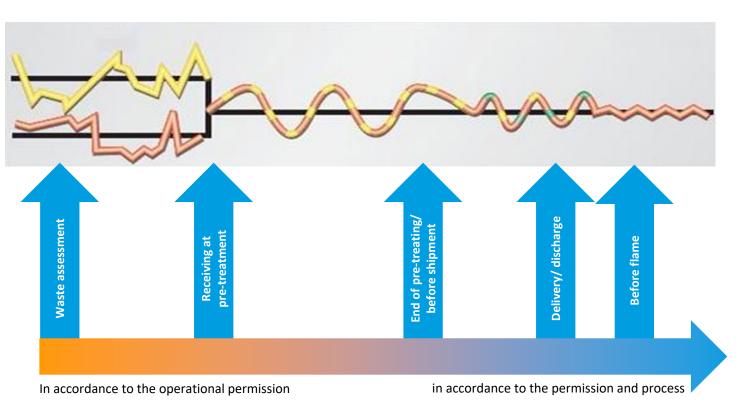


However, if the conditioning plant reaches its limits, the rotary **kiln must be adapted**.

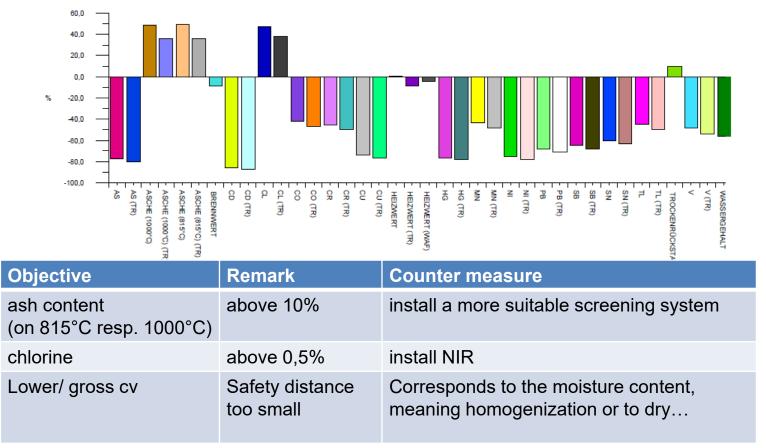
It should be noted that **only a sensible and favourable - not a cheap -** solution will lead to a sustainable and long-term security of supply for the kiln operation with a high thermal substitution rate (TSR).


Designing the pre-process right

1)


20212

Proposed solution for integrating the clinker burning process into a sustainable waste management system


Parallel to the pre- and co-processing processes, it is mandatory to monitor the AF qualities in terms of process, product and emissions.

Quality targets

Monitoring the individual access parameters

Abnehmer ECOWEST EBS ZIEL

Viability

How to develop a contract for supply:

When several agreed parameters and its value are analysed by norm for the delivery period, the statistical median value can be calculated from all results for the regular billing.

Finally, the settlement basis and tolerance are set in advance, so that the billing is based on the results of the deviation.

This is the answer to why there is no "market price" for alternative fuels! Each client has its individual set of tolerance for positive and negative factors of influence, based on the previous technical assessment regarding process, product and the emissions. Viability

How to draw up a supply contract

			calorific value (inferior)	
		<16 MJ/kg	16 MJ/kg	>16 MJ/Kg
Correction factor	per t per MJ/kg	-2,00 €	0,00 €	2,00 €
			chlorine content	
Concentration		< 0,9%	0,90%	> 0,9%
Correction factor	per t per 0,1%	3,00 €	0,00 €	-3,00 €
			moisture content	
Concentration		< 20%	20%	> 20%
Correction factor	per t per %	1,50 €	0,00 €	-1,50 €
			biomass content	
Concentration		<30%	30%	>30%
Correction factor	per t per %	-2,00 €	5,00 €	2,00 €

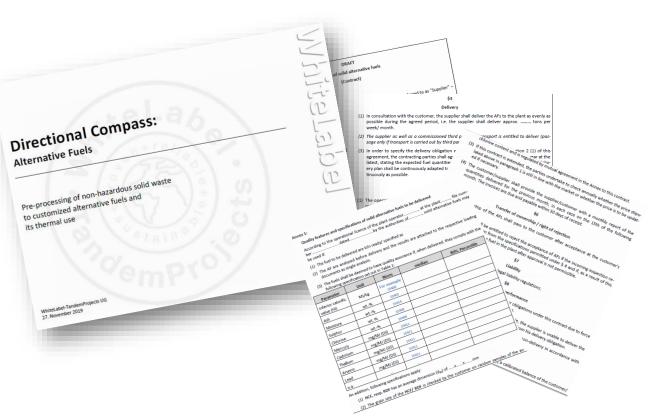
Incidentally, this billing basis can be extended or shortened as desired for the supply contracts. And, this also shows very clearly that it is always worthwhile to assess the composition and properties of the intended waste in detail first and to align the processing plant accordingly (invest) in order to produce tailormade qualities (quality assurance). Viability

How to draw up a supply contract

			calorific value (inferior)	
		<16 MJ/kg	16 MJ/kg	>16 MJ/Kg
Correction factor	per t per MJ/kg	-2.00 €	0.00 €	2.00 €
	per the mong	2,00 0	0,00 0	2,00 0
			chlorine content	
Concentration		< 0,9%	0,90%	> 0,9%
Correction factor	per t per 0,1%	3,00 €	0,00 €	-3,00 €
			moisture content	
Concentration		< 20%	20%	> 20%
Correction factor	per t per %	1,50 €	0,00 €	-1,50 €
			biomass content	
Concentration		<30%	30%	>30%
Correction factor	per t per %	-2,00 €	5,00 €	2,00 €
Settlement basis p	per ton (delivery contra	ct):		20,00 €
Pricing based of	n a bonus/malus agre	ement		
Example 1:	_	Median value/ month	in accordance to committed norms	
	calorific value MJ/kg	17,32	=(17,32 MJ/kg – 16 MJ/kg)*2€	2,64 €/t
	chlorine	1,14%	and so on/ see above	-7,20 €/t
	moisture	30,0%	_"_	-15,00 €/t
	biomass content	31,8%	_"_	8,60 €/t
			Purchase price:	-10,96 €/t
Example 2:		Median value/ month		
Example 2:	calorific value MJ/kg	22,00	_"_	12.00 €/t
	chlorine	0,50%		12,00 €/t 12,00 €/t
	moisture	12,0%		12,00 €/t 12.00 €/t
	biomass content	12,0%		-25,00 €/t
	Signage Content	10,070	Purchase price:	31,00 €/t

Now you can bill on monthly base

- \checkmark Verification of the agreed parameters
- ✓ agreed on comprehensible norms and methods
- \checkmark in accordance to the legal frame
- \checkmark as an honourable merchant


Agreed base amount per ton

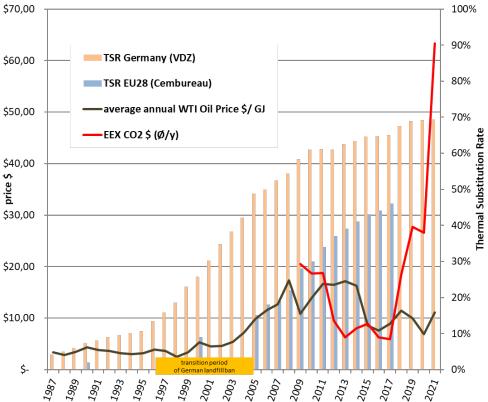
- + Bonus/ penalty due to process parameters
- + Bonus per increase of CO₂-neutral ingredients/ behaviour
- penalty per amount of fossil ingredients
- penalty per harming impurities such as water, Cl etc.

You will find a template of a draft of a delivery contract in the Annex of our Directional Compass p. 74 – 83

https://wltp.eu/assets/uploads/2016/07/20200305-WLTP-Handbook-2.4-1.pdf

Hvala na pozornosti!

hubert.baier@wltp.eu +49 (251) 2871 7368 www.wltp.eu

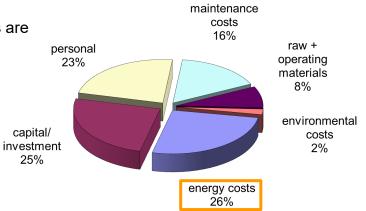

Economical Framework

4) Primary energy price:

The current oil price is still higher than in 1998 (14,39\$/bbl) when the German Cement Industry starts its dog run to get the pole position before landfilling is prohibited by law from June, 2005.

Since the oil price peak in 2013 the profitablity of AF projects are regionally made on the individual bench mark test.

H_u WTI Oil: 41,9 GJ/t 1t = 7,33 barrels



Economical Framework

5) Primary energy costs

Roughly 26% of the cement making process are energy costs. Depending on the technology the clinker burning process varies from ~6 kJ/ kg clinker (wet process) to ~3 kJ/ kg clinker (dry process).

Since the first oil price "shock" (1979) the cement industry started to seek for a cheaper energy source, and switched to lignite, which also marks the specification of proper SRF today.

Later, fluid or solid, pre-treated hazardous waste derived fuels and non-hazardous waste derived fuels are used for co-processing. Now, the financial optimization process has reached the whole process chain regarding its high competitive situation on the waste market as well as on the cement market.

The thermal substitution rate (TSR) indicates the use of alternative fuels against fossil fuels standardized to its net calorific value.

The benefit of AFR is by saving primary energy costs and today to substitute alternative fuels against those with a better gate fee.